What is Geothermal Power?
 
Geothermal power (from the Greek roots geo, meaning earth, and thermos, meaning heat) is power extracted from heat stored in the earth. This geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. It has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but is now better known for generating electricity. Worldwide, geothermal plants have the capacity to generate about 10 gigawatts of electricity as of 2007, and in practice supply 0.3% of global electricity demand. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications.
 
Geothermal power is cost effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels.
 
The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction of it may be profitably exploited. Drilling and exploration for deep resources costs tens of millions of dollars, and success is not guaranteed. Forecasts for the future penetration of geothermal power depend on assumptions about technology growth, the price of energy, subsidies, and interest rates.
 
Direct heating in all its forms is far more efficient than electricity generation and places less demanding temperature requirements on the heat resource. Heat may come from co-generation with a geothermal electrical plant or from smaller wells or heat exchangers buried in shallow ground. As a result, geothermal heating is economic over a much greater geographical range than geothermal electricity. Where natural hot springs are available, the heated water can be piped directly into radiators. If the ground is hot but dry, earth tubes or downhole heat exchangers can collect the heat. But even in areas where the ground is colder than room temperature, heat can still be extracted with a geothermal heat pump more cost-effectively and cleanly than it can be produced by conventional furnaces. These devices draw on much shallower and colder resources than traditional geothermal techniques, and they frequently combine a variety of other functions, including air conditioning, seasonal energy storage, solar energy collection, and electric heating. Geothermal heat pumps can be used for space heating essentially anywhere in the world.
 
 
Source: Wikipedia